#### DOCUMENT RESUME

ED 440 133 TM 030 745

AUTHOR Rogosa, David

TITLE Accuracy of Year-1, Year-2 Comparisons Using Individual

Percentile Rank Scores: Classical Test Theory Calculations.

CSE Technical Report.

INSTITUTION California Univ., Los Angeles. Center for the Study of

Evaluation.; Center for Research on Evaluation, Standards,

and Student Testing, Los Angeles, CA.

SPONS AGENCY Office of Educational Research and Improvement (ED),

Washington, DC.

REPORT NO CSE-TR-510 PUB DATE 2000-02-00

NOTE 24p.; For a related document on score accuracy, see TM 030

746.

CONTRACT R305B60002

AVAILABLE FROM Center for the Study of Evaluation, National Center for

Research on Evaluation, Standards, and Student Testing, Graduate School of Education & Information Studies, University of California at Los Angeles, 300 Charles E. Young Dr. North, Los Angeles, CA 90095-1522 (\$3.50). Tel:

310-266-1532. For full text:

http://www.cse.ucla.edu/CRESST/Reports/TECH510.PDF.

PUB TYPE Numerical/Quantitative Data (110) -- Reports - Descriptive

(141)

EDRS PRICE MF01/PC01 Plus Postage.

DESCRIPTORS \*Comparative Analysis; Elementary Secondary Education;

\*Standardized Tests; Tables (Data); Test Results; \*Test

Theory

IDENTIFIERS \*Percentile Ranks

#### ABSTRACT

In the reporting of individual student results from standardized tests in educational assessments, the percentile rank of the individual student is a major numerical indicator. For example, in the 1998 and 1999 California Standardized Testing and Reporting (STAR) program using the Stanford Achievement Test Series, Ninth Edition, Form T (Stanford 9), the 1998 "Home Report" and the 1999 "Parent Report" feature solely the National Grade Percentile Ranks. (These percentile rank scores are also featured in the more extensive "Student Report.") This paper develops a formulation and presents calculations to examine the properties of year-1, year-2 comparisons using these individual percentile rank scores. The approach and formulation follow the previous investigations of the accuracy of the individual percentile rank score in D. Rogosa (1999). A typical question that this paper addresses is: What are the chances that a student who really improved 10 percentile points from year-1 (1998) to year-2 (1999) obtains a lower percentile rank in year-2 than year-1? Such questions are addressed using the test reliability coefficient in classical test theory to represent the quality of measurement. These approaches make it possible to investigate the question, What level of test reliability is needed to obtain good accuracy in year-1, year-2 comparisons? (Author/SLD)





U.S. DEPARTMENT OF EDUCATION Office of Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)

- This document has been reproduced as received from the person or organization originating it.
- Minor changes have been made to improve reproduction quality.
- Points of view or opinions stated in this document do not necessarily represent official OERI position or policy.





Accuracy of Year-1, Year-2 Comparisons Using Individual Percentile Rank Scores: Classical Test Theory Calculations

**CSE Technical Report 510** 

David Rogosa CRESST/Stanford University





# CLA Center for the Study of Evaluation

Collaboration With:

esty de Corgnady av Borgorie • Stanford Unagredt • Los BAND Cabiddhation esty de Caufordio, Sanda Borgado • Unagresity de Sandorde Caufordha ikonal Testink Seriog • Unio polity de Pietsburge



## Accuracy of Year-1, Year-2 Comparisons Using Individual Percentile Rank Scores: Classical Test Theory Calculations

CSE Technical Report 510

David Rogosa CRESST/Stanford University

February 2000

Center for the Study of Evaluation
National Center for Research on Evaluation,
Standards, and Student Testing
Graduate School of Education & Information Studies
University of California, Los Angeles
Los Angeles, CA 90095-1522
(310) 206-1532



Project 3.3 Validity of Measures of Progress: Measurement of Progress David Director CRESST/Stanford University

David Rogosa, Project

Copyright © 2000 The Regents of the University of California

The work reported herein was supported under the Educational Research and Development Centers Program, PR/Award Number R305B60002, as administered by the Office of Educational Research and Improvement, U.S. Department of Education.

The findings and opinions expressed in this report do not reflect the positions or policies of the National Institute on Student Achievement, Curriculum, and Assessment, the Office of Educational Research and Improvement, or the U.S. Department of Education.



## Accuracy of Year-1, Year-2 Comparisons Using Individual Percentile Rank Scores: Classical Test Theory Calculations

David Rogosa Stanford University July 1999

### ABSTRACT

In the reporting of individual student results from standardized tests in educational assessments, the percentile rank of the individual student is a major, if not the most prominent, numerical indicator. For example, in the 1998 and 1999 California Standardized Testing and Reporting (STAR) program using the Stanford Achievement Test Series, Ninth Edition, Form T (Stanford 9), the 1998 Home Report and 1999 Parent Report feature solely the National Grade Percentile Ranks. (These percentile rank scores also featured in the more extensive Student Report). This paper develops a formulation and presents calculations to examine the properties of year-1, year-2 comparisons using these individual percentile rank scores. The approach and formulation follows the previous investigations of the accuracy of the individual percentile rank score in Rogosa (1999a). A typical question that this paper addresses is: What are the chances that a student who really improved 10 percentile points from year-1 (1998) to year-2 (1999) obtains a lower percentile rank in year-2 than year-1? Such questions are addressed using the test reliability coefficient in classical test theory to represent quality of measurement. Thus we can investigate the question, What level of test reliability is needed to obtain good accuracy in year-1, year-2 comparisons?



## 1. Technical Formulation

The technical formulation is a basic errors-in-variables model with all components having Gaussian distributions. As in Rogosa (1999a), all that is meant by the phrase "classical test theory calculation" is to identify the calculations as pertaining to the simplest case of constant error variance across the score distribution with continuous, Normally distributed scores. The components of what is referred to as the classical test theory calculation are listed below; use the subscript i=1,2 to indicate properties of year-1 or year-2 measurements.

- The cumulative distribution function of the observed scores Y in the national norming sample is denoted by  $G_i(Y)$  for year-1 or year-2. The classical test theory formulation defines this norming distribution, with density function  $g_i(Y)$ , to be a Normal Distribution; denote the corresponding population mean and standard deviation for Y by  $(\mu_{Ni}, \sigma_{Ni})$  for year-1 or year-2.
- The observed measure Y contains error of measurement  $\epsilon$ . The classical test theory assumptions dictate that the error of measurement, denoted by  $\epsilon$ , has a Normal Distribution with mean 0 and constant variance  $\sigma_{\epsilon i}^2$  across the score distribution: i.e.,  $\epsilon \sim N(0, \sqrt{\sigma_{\epsilon i}^2})$ . (More general formulations, such as  $\sigma_{\epsilon}^2$  depending on the level of the test score, can be incorporated into many of these results, with the overhead of added complexity.)
- The test reliability coefficient is often used as an index of the quality of measurement. The test reliability is defined for the full (norms) population; from the classical test theory formulation, the reliability is  $rel_i = (\sigma_{Ni}^2 \sigma_{\epsilon i}^2)/\sigma_{Ni}^2$ . For a rough, but useful, illustration set the reliability of a 60-item test to be .90 (in line with standardized achievement tests). Then use Spearman-Brown to obtain the rough test length equivalents for various reliability values: reliability .60 .65 .70 .75 .80 .85 .90 .95 number items 10 12 16 20 27 38 60 127
- The norming distributions,  $G_i(Y)$ , are based on fallible Y-scores. An alternative is to consider what the norming distribution would be if measurement had been perfect (i.e., not distorted by error of measurement in Y). At the risk of overcomplicating the notation, denote by  $G_i^*(Y)$  the cumulative distribution function with corresponding mean and standard deviation  $(\mu_{Ni}, [(\sigma_{Ni}^2 \sigma_{\epsilon i}^2)]^{1/2}); G_i^*(Y)$  represents a (hypothetical) norming distribution not distorted by measurement error (i.e., constructed from scores with reliability 1).
- The score for an individual student examinee is denoted by S, The percentile rank (PR) for the score S is 100  $G_i(S)$ ; thus  $G_i(S)$  can be thought of as a nondecreasing transformation of the score S to the percentile rank metric. The score S has underlying true score  $\tau$ ; the measurement model is  $S = \tau + \varepsilon$ . An individual under perfect measurement has percentile rank in observed norming distribution  $100 \ G_i(\tau)$  or, in a norming distribution not distorted by measurement error, the percentile rank is  $100 \ G_i^*(\tau)$ . Often in the calculations, an individual (or an individual's achievement level) is characterized a value of  $G_i^*(\tau)$ .



## 2. Accuracy of Year-to-Year Improvement in Percentile Rank Scores

The observed improvement is  $G_2(S_2) - G_1(S_1)$ , the signed difference between the percentile rank scores for year-2 and year-1; improvement may be positive or negative. The main accuracy calculation is for the quantity:

$$y1y2 = Pr\{G_2(S_2) - G_1(S_1) \le bound \mid G_1^*(\tau_1), G_2^*(\tau_2)\}$$
, (1)

the probability that the improvement in the percentile rank scores is less than or equal to the quantity "bound" (bound may be negative or positive) for a student with stated year-1 and year-2 values  $G_1^*(\tau_1)$  and  $G_2^*(\tau_2)$ .

## 2.1 Computation of y1y2 Probability: Technical Details

Preliminaries. Let  $\Phi[\mathbf{x}]$  indicate the distribution function (cdf) for N(0,1) and  $\Phi[\mathbf{x}]$  indicate the density (pdf) for N(0,1). Then  $G_i(\mathbf{x}) = \Phi[(\mathbf{x} - \mu_{Ni})/\sigma_{Ni}]$ , and  $S_i \mid \tau_i \sim N[\tau_i, \sigma_{Ni}(1 - \mathrm{rel}_i)^{\frac{1}{2}}]$  so that  $\Pr\{S_i \leq \mathbf{x}\} = \Phi[(\mathbf{x} - \tau_i)/\sigma_{Ni}(1 - \mathrm{rel}_i)^{\frac{1}{2}}]$ . Also note that  $\tau_i = \mu_{Ni} + \sigma_{Ni}$  ( $\sqrt{\mathrm{rel}_i}$ )  $\Phi^{-1}[G_i^*(\tau)]$  and  $G_i^{-1}[G_i^*(\tau) + p] = \mu_{Ni} + \sigma_{Ni}$   $\Phi^{-1}[G_i^*(\tau) + p]$ .

The computation of the y1y2 probability is implemented using the following conditioning argument. For a student having a specified value for  $G_1^*(\tau_1)$ , condition on a draw of an  $s_1$  from the  $S_1$ -distribution ( $S_1 | \tau_1 \sim N[\tau_1, \sigma_{N1}(1 - rel_1)^2]$ ) and express that  $S_1$ -value in terms of its fractile of the  $S_1$ -distribution,  $ps_1$ , to obtain:

$$\Pr\{G_2(S_2) - G_1(S_1) \le bound \mid ps_1\} = \Pr\{S_2 \le G_2^{-1}[G_1(S_1) + bound] \mid ps_1\} = \Pr\{G_2(S_2) - G_1(S_1) \le bound \mid ps_1\} = \Pr\{S_2 \le G_2^{-1}[G_1(S_1) + bound] \mid ps_1\} = \Pr\{G_2(S_2) - G_1(S_1) \le bound \mid ps_1\} = \Pr\{G_2(S_2) - G_1(S_1) \le bound \mid ps_1\} = \Pr\{G_2(S_2) - G_1(S_1) \le bound \mid ps_1\} = \Pr\{G_2(S_2) - G_1(S_1) + bound\} = \Pr\{G_2(S_2) - G_1(S_2) + bound\} = \Pr\{G_2(S_2) - G_1(S_2) + bound\} = \Pr\{G_2(S_2) - G_1(S_2) + bound\} = \Pr\{G_2(S_2) - G_2(S_2) + bound\} = \Pr\{G_2$$

$$\Phi \left[ \left\{ \Phi^{-1} \left[ \Phi \left[ (1 - \text{rel}_{1})^{\frac{1}{2}} \Phi^{-1} \left[ \text{ps}_{1} \right] + (\sqrt{\text{rel}_{1}}) \Phi^{-1} \left[ G_{1}^{*} (\tau_{1}) \right] \right] + \text{bound} \right] - (\sqrt{\text{rel}_{2}}) \Phi^{-1} \left[ G_{2}^{*} (\tau_{2}) \right] \right\} / (1 - \text{rel}_{2})^{\frac{1}{2}} \right] .$$
(2)

As a side note to (2),  $G_1(S_1)$  can be expressed in terms of  $ps_1$  as:

$$G_1(S_1) = \Phi[(1 - rel_1)^{\frac{1}{2}} \Phi^{-1}[ps_1] + (\sqrt{rel_1}) \Phi^{-1}[G_1^{\star}(\tau_1)]] .$$

Then uncondition (2) by integrating  $\Pr\{G_2(S_2) - G_1(S_1) \le \text{bound} \mid ps_1\}$  over  $ps_1$  in [0,1]:

$$y1y2 = \int_{0}^{1} \left[ \Phi \left[ \left\{ \Phi^{-1} \left[ \Phi \left[ (1 - \text{rel}_{1})^{\frac{1}{2}} \Phi^{-1} \left[ \text{ps}_{1} \right] + (\sqrt{\text{rel}_{1}}) \Phi^{-1} \left[ G_{1}^{\star} (\tau_{1}) \right] \right] + \text{bound} \right] - (\sqrt{\text{rel}_{2}}) \Phi^{-1} \left[ G_{2}^{\star} (\tau_{2}) \right] \right\} / (1 - \text{rel}_{2})^{\frac{1}{2}} \right] dps_{1}$$
 (3)



## 2.2 Calculations and Illustrations

Maintaining Percentile Rank,  $G_1^*(\tau_1) = G_2^*(\tau_2)$ . Table 1 displays values of y1y2 in (3) for a student who has maintained percentile rank in year-1 and year-2 in the sense of  $G_1^*(\tau_1)$  is set equal to  $G_2^*(\tau_2)$ . The entries in Table 1 also use the simplification of (3) in setting the year-1 and year-2 test reliability coefficients to be equal, rel<sub>1</sub> = rel<sub>2</sub>. Consequences of different reliabilities are also discussed below.

Table 1 presents values of y1y2 in (3) for test reliability values from .70 to .95 (.7, .8, .85, .9, .925, .95). For each reliability value the rows of each sub-table represent a student's value of  $G_1^*(\tau_1) = G_2^*(\tau_2)$ , so that the .60 row indicates a student who "really belongs" at the  $60^{th}$  percentile in both year-1 and year-2. For a test with reliability .90 administered in year-1 and year-2, that student has a 11.6% chance of showing a decrease of at least 20 percentile points and also a 11.6% chance of showing an increase of at least 20 percentile points.

To compare these accuracy results for year-1, year-2 comparisons in Table 1 with more traditional assessments of uncertainty, consider values of the standard error of  $G_2(S_2)-G_1(S_1)$ . The results for s.e.[ $G_2(S_2)-G_1(S_1)$ ] are obtained from derivations of the moments of the percentile rank score in Rogosa (1999c). For both year-1 and year-2 tests having reliability .90, s.e.[ $G_2(S_2)-G_1(S_1)$ ] is 0.1702 for  $G_1^*(\tau_1)=G_2^*(\tau_2)=$ .50. Increase the test reliabilities to .95 and this s.e.[ $G_2(S_2)-G_1(S_1)$ ] becomes 0.1231.

### Insert Table 1 here

Another version of the statement about the student with  $G_1^{\star}(\tau_1) = G_2^{\star}(\tau_2)$ , = .60 and test reliability .90 is that the probability is .768 that the magnitude of the observed change,  $|G_2(S_2) - G_1(S_1)|$ , is less than .20. Figure 1 displays these type of probability statements by plotting the values of  $Pr\{G_2(S_2) - G_1(S_1) \leq \text{bound}\} - Pr\{G_2(S_2) - G_1(S_1) \leq -\text{bound}\}$  as a function of test reliability for  $G_1^{\star}(\tau_1) = G_2^{\star}(\tau_2) = .50$  and .75 or .25.

### Insert Figure 1 here

The result for y1y2 in (3) allows the year-1 and year-2 test reliability coefficients, rel<sub>1</sub> and rel<sub>2</sub> to differ. The consequences of different test reliabilities can be charted in various ways. Rather than be exhaustive, some specific examples are considered here. With  $G_1^*(\tau_1) = G_2^*(\tau_2) = .50$ , the effect of differing test reliabilities is minimal in the following set-up. Taking the base as rel<sub>1</sub> = rel<sub>2</sub> = .90, the difference in y1y2 values between the base (i.e., Table 1 entries) and differing reliabilities rel<sub>1</sub> = .85, rel<sub>2</sub> = .95 is less than .001 for the listed values of bound. The same result is found for comparing rel<sub>1</sub> = rel<sub>2</sub> = .80 with rel<sub>1</sub> = .75, rel<sub>2</sub> = .85. Moving away from  $G_1^*(\tau_1) = G_2^*(\tau_2) = .50$ , differences do emerge. Take  $G_1^*(\tau_1) = G_2^*(\tau_2) = .75$ , then the



 $\begin{array}{l} \text{Table 1.} \\ \Pr\{G_2(S_2) - G_1(S_1) \leq \text{bound } \mid G_1^{\star}(\tau_1), \ G_2^{\star}(\tau_2)\} \ \text{for reliability .70 to .95 and } G_1^{\star}(\tau_1) = \ G_2^{\star}(\tau_2). \end{array}$ 

| Reliability .70                                                                                                                                                                                                                       |                                                                                                              |                                                                                                                        |                                                                                                              |                                                                                                                                          |                                                                    |                                                                               |                                                                                                                                                     |                                                                                                                                                 |                                                                               |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                       | 20                                                                                                           | 15                                                                                                                     | 10                                                                                                           | 05                                                                                                                                       | 0.0                                                                | .05                                                                           | .10                                                                                                                                                 | .15                                                                                                                                             | . 2                                                                           |  |  |  |  |
| $G_1^{\star}(\tau_1)$                                                                                                                                                                                                                 | •                                                                                                            |                                                                                                                        |                                                                                                              |                                                                                                                                          |                                                                    |                                                                               |                                                                                                                                                     |                                                                                                                                                 |                                                                               |  |  |  |  |
| .10                                                                                                                                                                                                                                   | 0.124                                                                                                        | 0.183                                                                                                                  | 0.263                                                                                                        | 0.369                                                                                                                                    | 0.5                                                                | 0.631                                                                         | 0.737                                                                                                                                               | 0.817                                                                                                                                           | 0.876                                                                         |  |  |  |  |
| .20                                                                                                                                                                                                                                   | 0.186                                                                                                        | 0.248                                                                                                                  | 0.323                                                                                                        | 0.408                                                                                                                                    | 0.5                                                                | 0.592                                                                         | 0.677                                                                                                                                               | 0.752                                                                                                                                           | 0.814                                                                         |  |  |  |  |
| .30                                                                                                                                                                                                                                   | 0.219                                                                                                        | 0.279                                                                                                                  | 0.348                                                                                                        | 0.422                                                                                                                                    | 0.5                                                                | 0.578                                                                         | 0.652                                                                                                                                               | 0.721                                                                                                                                           | 0.781                                                                         |  |  |  |  |
| .40                                                                                                                                                                                                                                   | 0.235                                                                                                        | 0.294                                                                                                                  | 0.359                                                                                                        | 0.428                                                                                                                                    | 0.5                                                                | 0.572                                                                         | 0.641                                                                                                                                               | 0.706                                                                                                                                           | 0.765                                                                         |  |  |  |  |
| .50                                                                                                                                                                                                                                   | 0.24                                                                                                         | 0.299                                                                                                                  | 0.363                                                                                                        | 0.43                                                                                                                                     | 0.5                                                                | 0.57                                                                          | 0.637                                                                                                                                               | 0.701                                                                                                                                           | 0.76                                                                          |  |  |  |  |
| .60                                                                                                                                                                                                                                   | 0.235                                                                                                        | 0.294                                                                                                                  | 0.359                                                                                                        | 0.428                                                                                                                                    | 0.5                                                                | 0.572                                                                         | 0.641                                                                                                                                               | 0.706<br>0.721                                                                                                                                  | 0.765<br>0.781                                                                |  |  |  |  |
| .70                                                                                                                                                                                                                                   | 0.219                                                                                                        | 0.279                                                                                                                  | 0.348                                                                                                        | 0.422                                                                                                                                    | 0.5                                                                | 0.578<br>0.592                                                                | 0.652<br>0.677                                                                                                                                      | 0.721                                                                                                                                           | 0.781                                                                         |  |  |  |  |
| .80                                                                                                                                                                                                                                   | 0.186                                                                                                        | 0.248                                                                                                                  | 0.323<br>0.263                                                                                               | 0.408<br>0.369                                                                                                                           | 0.5<br>0.5                                                         | 0.631                                                                         | 0.877                                                                                                                                               | 0.732                                                                                                                                           | 0.876                                                                         |  |  |  |  |
| . 90                                                                                                                                                                                                                                  | 0.124                                                                                                        | 0.183                                                                                                                  | 0.263                                                                                                        | 0.303                                                                                                                                    | 0.5                                                                | 0.031                                                                         | 0.757                                                                                                                                               | 0.027                                                                                                                                           | 0.070                                                                         |  |  |  |  |
| Reliabili                                                                                                                                                                                                                             | tv .80                                                                                                       |                                                                                                                        |                                                                                                              |                                                                                                                                          | •                                                                  |                                                                               |                                                                                                                                                     |                                                                                                                                                 |                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                       | 3                                                                                                            | bo                                                                                                                     | und                                                                                                          |                                                                                                                                          |                                                                    |                                                                               |                                                                                                                                                     |                                                                                                                                                 |                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                       | 20                                                                                                           | 15                                                                                                                     | 10                                                                                                           | 05                                                                                                                                       | 0.0                                                                | .05                                                                           | .10                                                                                                                                                 | .15                                                                                                                                             | . 2                                                                           |  |  |  |  |
| $G_1^{\star}(\tau_1)$                                                                                                                                                                                                                 |                                                                                                              |                                                                                                                        |                                                                                                              |                                                                                                                                          |                                                                    |                                                                               |                                                                                                                                                     |                                                                                                                                                 |                                                                               |  |  |  |  |
| .10                                                                                                                                                                                                                                   | 0.072                                                                                                        | 0.126                                                                                                                  | 0.211                                                                                                        | 0.337                                                                                                                                    | 0.5                                                                | 0.663                                                                         | 0.789                                                                                                                                               | 0.874                                                                                                                                           | 0.928                                                                         |  |  |  |  |
| .20                                                                                                                                                                                                                                   | 0.137                                                                                                        | 0.202                                                                                                                  | 0.287                                                                                                        | 0.388                                                                                                                                    | 0.5                                                                | 0.612                                                                         | 0.713                                                                                                                                               | 0.798                                                                                                                                           | 0.863                                                                         |  |  |  |  |
| .30                                                                                                                                                                                                                                   | 0.174                                                                                                        | 0.241                                                                                                                  | 0.319                                                                                                        | 0.407                                                                                                                                    | 0.5                                                                | 0.593                                                                         | 0.681                                                                                                                                               | 0.759                                                                                                                                           | 0.826                                                                         |  |  |  |  |
| .40                                                                                                                                                                                                                                   | 0.194                                                                                                        | 0.259                                                                                                                  | 0.333                                                                                                        | 0.415                                                                                                                                    | 0.5                                                                | 0.585                                                                         | 0.667                                                                                                                                               | 0.741                                                                                                                                           | 0.806                                                                         |  |  |  |  |
| .50                                                                                                                                                                                                                                   | 0.2                                                                                                          | 0.265                                                                                                                  | 0.338                                                                                                        | 0.417                                                                                                                                    | 0.5                                                                | 0.583                                                                         | 0.662<br>0.667                                                                                                                                      | 0.735<br>0.741                                                                                                                                  | 0.8<br>0.806                                                                  |  |  |  |  |
| .60                                                                                                                                                                                                                                   | 0.194                                                                                                        | 0.259                                                                                                                  | 0.333                                                                                                        | 0.415<br>0.407                                                                                                                           | 0.5<br>0.5                                                         | 0.585<br>0.593                                                                | 0.681                                                                                                                                               | 0.759                                                                                                                                           | 0.826                                                                         |  |  |  |  |
| .70                                                                                                                                                                                                                                   | 0.174<br>0.137                                                                                               | 0.241<br>0.202                                                                                                         | 0.319<br>0.287                                                                                               | 0.388                                                                                                                                    | 0.5                                                                | 0.612                                                                         | 0.713                                                                                                                                               | 0.798                                                                                                                                           | 0.863                                                                         |  |  |  |  |
| .80<br>.90                                                                                                                                                                                                                            | 0.137                                                                                                        | 0.126                                                                                                                  | 0.211                                                                                                        | 0.337                                                                                                                                    | 0.5                                                                | 0.663                                                                         | 0.789                                                                                                                                               | 0.874                                                                                                                                           | 0.928                                                                         |  |  |  |  |
|                                                                                                                                                                                                                                       |                                                                                                              |                                                                                                                        |                                                                                                              |                                                                                                                                          |                                                                    |                                                                               |                                                                                                                                                     |                                                                                                                                                 |                                                                               |  |  |  |  |
| Reliabili                                                                                                                                                                                                                             | ty .85                                                                                                       | bo                                                                                                                     | ound                                                                                                         |                                                                                                                                          |                                                                    |                                                                               |                                                                                                                                                     |                                                                                                                                                 |                                                                               |  |  |  |  |
| Reliabili                                                                                                                                                                                                                             | •                                                                                                            | bc<br>15                                                                                                               | ound<br>10                                                                                                   | 05                                                                                                                                       | 0.0                                                                | . 05                                                                          | .10                                                                                                                                                 | .15                                                                                                                                             | . 2                                                                           |  |  |  |  |
|                                                                                                                                                                                                                                       | ty .85                                                                                                       |                                                                                                                        |                                                                                                              | 05                                                                                                                                       | 0.0                                                                | . 05                                                                          | .10                                                                                                                                                 | .15                                                                                                                                             | . 2                                                                           |  |  |  |  |
| $G_1^{\star}(\tau_1)$                                                                                                                                                                                                                 | 20                                                                                                           |                                                                                                                        |                                                                                                              | 05<br>0.311                                                                                                                              | 0.0                                                                | .05<br>0.689                                                                  | .10<br>0.827                                                                                                                                        | .15<br>0.911                                                                                                                                    | .2<br>0.957                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                       | •                                                                                                            | 15                                                                                                                     | 10                                                                                                           | 0.311<br>0.371                                                                                                                           |                                                                    |                                                                               | 0.827<br>0.742                                                                                                                                      | 0.911<br>0.832                                                                                                                                  | 0.957<br>0.897                                                                |  |  |  |  |
| $G_1^{\star}(\tau_1)$                                                                                                                                                                                                                 | 20<br>0.043                                                                                                  | 15<br>0.089                                                                                                            | 10<br>0.173<br>0.258<br>0.295                                                                                | 0.311<br>0.371<br>0.394                                                                                                                  | 0.5<br>0.5<br>0.5                                                  | 0.689<br>0.629<br>0.606                                                       | 0.827<br>0.742<br>0.705                                                                                                                             | 0.911<br>0.832<br>0.79                                                                                                                          | 0.957<br>0.897<br>0.859                                                       |  |  |  |  |
| $G_1^*(\tau_1)$ .10 .20 .30 .40                                                                                                                                                                                                       | 20<br>0.043<br>0.103<br>0'.141<br>0.162                                                                      | 15<br>0.089<br>0.168<br>0.21<br>0.23                                                                                   | 10<br>0.173<br>0.258<br>0.295<br>0.312                                                                       | 0.311<br>0.371<br>0.394<br>0.403                                                                                                         | 0.5<br>0.5<br>0.5<br>0.5                                           | 0.689<br>0.629<br>0.606<br>0.597                                              | 0.827<br>0.742<br>0.705<br>0.688                                                                                                                    | 0.911<br>0.832<br>0.79<br>0.77                                                                                                                  | 0.957<br>0.897<br>0.859<br>0.838                                              |  |  |  |  |
| $\begin{array}{c} G_1^{\star}(\tau_1) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ \end{array}$                                                                                                                                              | 20<br>0.043<br>0.103<br>0'.141<br>0.162<br>0.168                                                             | 15<br>0.089<br>0.168<br>0.21<br>0.23<br>0.237                                                                          | 10<br>0.173<br>0.258<br>0.295<br>0.312<br>0.317                                                              | 0.311<br>0.371<br>0.394<br>0.403<br>0.406                                                                                                | 0.5<br>0.5<br>0.5<br>0.5                                           | 0.689<br>0.629<br>0.606<br>0.597<br>0.594                                     | 0.827<br>0.742<br>0.705<br>0.688<br>0.683                                                                                                           | 0.911<br>0.832<br>0.79<br>0.77<br>0.763                                                                                                         | 0.957<br>0.897<br>0.859<br>0.838<br>0.832                                     |  |  |  |  |
| $\begin{array}{c} G_{l}^{\star}(\tau_{l}) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \end{array}$                                                                                                                                      | 20<br>0.043<br>0.103<br>0'.141<br>0.162<br>0.168<br>0.162                                                    | 15<br>0.089<br>0.168<br>0.21<br>0.23<br>0.237<br>0.23                                                                  | 10<br>0.173<br>0.258<br>0.295<br>0.312<br>0.317<br>0.312                                                     | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403                                                                                       | 0.5<br>0.5<br>0.5<br>0.5<br>0.5                                    | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597                            | 0.827<br>0.742<br>0.705<br>0.688<br>0.683<br>0.688                                                                                                  | 0.911<br>0.832<br>0.79<br>0.77<br>0.763                                                                                                         | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838                            |  |  |  |  |
| $\begin{array}{c} G_{l}^{\star}(\tau_{l}) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ \end{array}$                                                                                                                            | 20<br>0.043<br>0.103<br>0'.141<br>0.162<br>0.168<br>0.162<br>0.141                                           | 15<br>0.089<br>0.168<br>0.21<br>0.23<br>0.237<br>0.23                                                                  | 10<br>0.173<br>0.258<br>0.295<br>0.312<br>0.317<br>0.312<br>0.295                                            | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394                                                                              | 0.5<br>0.5<br>0.5<br>0.5<br>0.5                                    | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606                   | 0.827<br>0.742<br>0.705<br>0.688<br>0.683<br>0.688<br>0.705                                                                                         | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77                                                                                                 | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859                   |  |  |  |  |
| $\begin{array}{c} G_{l}^{\star}(\tau_{l}) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ .80 \end{array}$                                                                                                                        | 20<br>0.043<br>0.103<br>0.141<br>0.162<br>0.168<br>0.162<br>0.141<br>0.103                                   | 15<br>0.089<br>0.168<br>0.21<br>0.23<br>0.237<br>0.23<br>0.21                                                          | 10<br>0.173<br>0.258<br>0.295<br>0.312<br>0.317<br>0.312<br>0.295<br>0.258                                   | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371                                                                     | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                             | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606<br>0.629          | 0.827<br>0.742<br>0.705<br>0.688<br>0.683<br>0.688<br>0.705                                                                                         | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832                                                                                | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838                            |  |  |  |  |
| $\begin{array}{c} G_1^{\star}(\tau_1) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ .80 \\ .90 \end{array}$                                                                                                                     | 20<br>0.043<br>0.103<br>0.141<br>0.162<br>0.168<br>0.162<br>0.141<br>0.103<br>0.043                          | 15<br>0.089<br>0.168<br>0.21<br>0.23<br>0.237<br>0.23                                                                  | 10<br>0.173<br>0.258<br>0.295<br>0.312<br>0.317<br>0.312<br>0.295                                            | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394                                                                              | 0.5<br>0.5<br>0.5<br>0.5<br>0.5                                    | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606                   | 0.827<br>0.742<br>0.705<br>0.688<br>0.683<br>0.688<br>0.705                                                                                         | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77                                                                                                 | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.897          |  |  |  |  |
| $\begin{array}{c} G_{l}^{\star}(\tau_{l}) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ .80 \end{array}$                                                                                                                        | 20<br>0.043<br>0.103<br>0.141<br>0.162<br>0.168<br>0.162<br>0.141<br>0.103<br>0.043                          | 15<br>0.089<br>0.168<br>0.21<br>0.23<br>0.237<br>0.23<br>0.21<br>0.168<br>0.089                                        | 10 0.173 0.258 0.295 0.312 0.317 0.312 0.295 0.258 0.173                                                     | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371                                                                     | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                             | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606<br>0.629          | 0.827<br>0.742<br>0.705<br>0.688<br>0.683<br>0.688<br>0.705                                                                                         | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832                                                                                | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.897          |  |  |  |  |
| G <sub>1</sub> *(τ <sub>1</sub> ) .10 .20 .30 .40 .50 .60 .70 .80 .90                                                                                                                                                                 | 20<br>0.043<br>0.103<br>0.141<br>0.162<br>0.168<br>0.162<br>0.141<br>0.103<br>0.043                          | 15<br>0.089<br>0.168<br>0.21<br>0.23<br>0.237<br>0.23<br>0.21<br>0.168<br>0.089                                        | 10<br>0.173<br>0.258<br>0.295<br>0.312<br>0.317<br>0.312<br>0.295<br>0.258                                   | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371                                                                     | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                             | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606<br>0.629          | 0.827<br>0.742<br>0.705<br>0.688<br>0.683<br>0.688<br>0.705                                                                                         | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832                                                                                | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.897          |  |  |  |  |
| $G_{l}^{\star}(\tau_{1})$ .10 .20 .30 .40 .50 .60 .70 .80 .90  Reliabili                                                                                                                                                              | 20 0.043 0.103 0.141 0.162 0.168 0.162 0.141 0.103 0.043  ty .9020                                           | 15<br>0.089<br>0.168<br>0.21<br>0.23<br>0.237<br>0.23<br>0.21<br>0.168<br>0.089                                        | 10  0.173 0.258 0.295 0.312 0.317 0.312 0.295 0.258 0.173                                                    | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371<br>0.311                                                            | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5               | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606<br>0.629<br>0.689 | 0.827<br>0.742<br>0.705<br>0.688<br>0.683<br>0.688<br>0.705<br>0.742<br>0.827                                                                       | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832<br>0.911                                                                       | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.897<br>0.957 |  |  |  |  |
| $\begin{array}{c} G_1^{\star}(\tau_1) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ .80 \\ .90 \\ \end{array}$ Reliabili                                                                                                        | 20 0.043 0.103 0'.141 0.162 0.168 0.162 0.141 0.103 0.043  ty .9020 0.017                                    | 15<br>0.089<br>0.168<br>0.21<br>0.23<br>0.237<br>0.23<br>0.21<br>0.168<br>0.089                                        | 10  0.173 0.258 0.295 0.312 0.317 0.312 0.295 0.258 0.173  pund10 0.121                                      | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371<br>0.311                                                            | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5               | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606<br>0.629<br>0.689 | 0.827<br>0.742<br>0.705<br>0.688<br>0.683<br>0.688<br>0.705<br>0.742<br>0.827                                                                       | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832<br>0.911                                                                       | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.897<br>0.957 |  |  |  |  |
| $G_{1}^{\star}(\tau_{1})$ .10 .20 .30 .40 .50 .60 .70 .80 .90  Reliabili $G_{1}^{\star}(\tau_{1})$ .10 .20                                                                                                                            | 20 0.043 0.103 0'.141 0.162 0.168 0.162 0.141 0.103 0.043  ty .9020 0.017 0.06                               | 15<br>0.089<br>0.168<br>0.21<br>0.23<br>0.237<br>0.23<br>0.21<br>0.168<br>0.089                                        | 10  0.173 0.258 0.295 0.312 0.317 0.312 0.295 0.258 0.173  pund10  0.121 0.213                               | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371<br>0.311                                                            | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5               | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606<br>0.629<br>0.689 | 0.827<br>0.742<br>0.705<br>0.688<br>0.683<br>0.688<br>0.705<br>0.742<br>0.827                                                                       | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832<br>0.911                                                                       | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.859<br>0.957 |  |  |  |  |
| $\begin{array}{c} G_l^{\star}(\tau_l) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ .80 \\ .90 \\ \end{array}$ Reliabili                                                                                                        | 20 0.043 0.103 0'.141 0.162 0.168 0.162 0.141 0.103 0.043  ty .9020 0.017 0.06 0.096                         | 15<br>0.089<br>0.168<br>0.21<br>0.23<br>0.237<br>0.23<br>0.21<br>0.168<br>0.089<br>bc<br>15<br>0.047<br>0.119<br>0.163 | 10  0.173 0.258 0.295 0.312 0.317 0.312 0.295 0.258 0.173  ound10  0.121 0.213 0.256                         | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371<br>0.311                                                            | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5               | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606<br>0.629<br>0.689 | 0.827<br>0.742<br>0.705<br>0.688<br>0.683<br>0.688<br>0.705<br>0.742<br>0.827                                                                       | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832<br>0.911                                                                       | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.897<br>0.957 |  |  |  |  |
| $\begin{array}{c} G_l^{\star}(\tau_l) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ .80 \\ .90 \\ \end{array}$ Reliabili                                                                                                        | 20 0.043 0.103 0.141 0.162 0.168 0.162 0.141 0.103 0.043  ty .9020 0.017 0.06 0.096 0.116                    | 15  0.089 0.168 0.21 0.23 0.237 0.23 0.21 0.168 0.089  bc15  0.047 0.119 0.163 0.186                                   | 10  0.173 0.258 0.295 0.312 0.317 0.312 0.295 0.258 0.173  ound10  0.121 0.213 0.256 0.276                   | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371<br>0.311                                                            | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5        | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606<br>0.629<br>0.689 | 0.827<br>0.742<br>0.705<br>0.688<br>0.688<br>0.705<br>0.742<br>0.827                                                                                | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832<br>0.911<br>.15<br>0.953<br>0.881<br>0.837                                     | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.897<br>0.957 |  |  |  |  |
| $\begin{array}{c} G_{l}^{\star}(\tau_{l}) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ .80 \\ .90 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                    | 20 0.043 0.103 0.141 0.162 0.168 0.162 0.141 0.103 0.043  ty .9020 0.017 0.06 0.096 0.116 0.123              | 15  0.089 0.168 0.21 0.23 0.237 0.23 0.21 0.168 0.089  bc15  0.047 0.119 0.163 0.186 0.193                             | 10  0.173 0.258 0.295 0.312 0.317 0.312 0.295 0.258 0.173  ound10  0.121 0.213 0.256 0.276 0.282             | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371<br>0.311<br>05                                                      | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5               | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606<br>0.629<br>0.689 | 0.827<br>0.742<br>0.705<br>0.688<br>0.688<br>0.705<br>0.742<br>0.827<br>.10<br>0.879<br>0.787<br>0.744<br>0.724                                     | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832<br>0.911<br>.15<br>0.953<br>0.881<br>0.837<br>0.814                            | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.897<br>0.957 |  |  |  |  |
| $\begin{array}{c} G_1^{\star}(\tau_1) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ .80 \\ .90 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                        | 20  0.043 0.103 0.141 0.162 0.168 0.162 0.141 0.103 0.043  ty .90 20  0.017 0.06 0.096 0.116 0.123 0.116     | 15  0.089 0.168 0.21 0.23 0.237 0.23 0.21 0.168 0.089  bc15  0.047 0.119 0.163 0.186 0.193 0.186                       | 10  0.173 0.258 0.295 0.312 0.317 0.312 0.295 0.258 0.173  ound10  0.121 0.213 0.256 0.276 0.282 0.276       | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371<br>0.311                                                            | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606<br>0.629<br>0.689 | 0.827<br>0.742<br>0.705<br>0.688<br>0.688<br>0.705<br>0.742<br>0.827<br>.10<br>0.879<br>0.787<br>0.744<br>0.724<br>0.718                            | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832<br>0.911<br>.15<br>0.953<br>0.881<br>0.837<br>0.814<br>0.807                   | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.897<br>0.957 |  |  |  |  |
| $\begin{array}{c} G_1^{\star}(\tau_1) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ .80 \\ .90 \\ \end{array}$ Reliabili $\begin{array}{c} G_1^{\star}(\tau_1) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ \end{array}$ | 20 0.043 0.103 0.141 0.162 0.168 0.162 0.141 0.103 0.043  ty .9020 0.017 0.06 0.096 0.116 0.123              | 15  0.089 0.168 0.21 0.23 0.237 0.23 0.21 0.168 0.089  bc15  0.047 0.119 0.163 0.186 0.193                             | 10  0.173 0.258 0.295 0.312 0.317 0.312 0.295 0.258 0.173  ound10  0.121 0.213 0.256 0.276 0.282             | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371<br>0.311<br>05<br>0.27<br>0.344<br>0.372<br>0.383<br>0.387<br>0.383 | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5        | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.699<br>0.629<br>0.689          | 0.827<br>0.742<br>0.705<br>0.688<br>0.688<br>0.705<br>0.742<br>0.827<br>.10<br>0.879<br>0.787<br>0.744<br>0.724<br>0.724<br>0.724<br>0.724<br>0.724 | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832<br>0.911<br>.15<br>0.953<br>0.881<br>0.837<br>0.814<br>0.807<br>0.814          | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.897<br>0.957 |  |  |  |  |
| $\begin{array}{c} G_1^{\star}(\tau_1) \\ .10 \\ .20 \\ .30 \\ .40 \\ .50 \\ .60 \\ .70 \\ .80 \\ .90 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                        | 20 0.043 0.103 0'.141 0.162 0.168 0.162 0.141 0.103 0.043  ty .9020 0.017 0.06 0.096 0.116 0.123 0.116 0.096 | 15  0.089 0.168 0.21 0.23 0.237 0.23 0.21 0.168 0.089  bc15  0.047 0.119 0.163 0.186 0.193 0.186 0.163                 | 10  0.173 0.258 0.295 0.312 0.317 0.312 0.295 0.258 0.173  pund10  0.121 0.213 0.256 0.276 0.282 0.276 0.256 | 0.311<br>0.371<br>0.394<br>0.403<br>0.406<br>0.403<br>0.394<br>0.371<br>0.311<br>05<br>0.27<br>0.344<br>0.372<br>0.383<br>0.387<br>0.383 | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5 | 0.689<br>0.629<br>0.606<br>0.597<br>0.594<br>0.597<br>0.606<br>0.629<br>0.689 | 0.827<br>0.742<br>0.705<br>0.688<br>0.683<br>0.688<br>0.705<br>0.742<br>0.827<br>.10<br>0.879<br>0.787<br>0.744<br>0.724<br>0.718<br>0.724<br>0.724 | 0.911<br>0.832<br>0.79<br>0.77<br>0.763<br>0.77<br>0.79<br>0.832<br>0.911<br>.15<br>0.953<br>0.881<br>0.837<br>0.814<br>0.807<br>0.814<br>0.837 | 0.957<br>0.897<br>0.859<br>0.838<br>0.832<br>0.838<br>0.859<br>0.897<br>0.957 |  |  |  |  |



| Reliab          | ility .925 |       |       |       |     |       |       |       |       |
|-----------------|------------|-------|-------|-------|-----|-------|-------|-------|-------|
|                 | J          | bo    | ound  |       |     |       |       |       |       |
|                 | 20         | 15    | 10    | 05    | 0.0 | .05   | .10   | .15   | . 2   |
| $G_1^*(\tau_1)$ |            |       |       |       |     |       |       |       |       |
| .10             | 0.007      | 0.026 | 0.087 | 0.238 | 0.5 | 0.762 | 0.913 | 0.974 | 0.993 |
| .20             | 0.037      | 0.087 | 0.18  | 0.322 | 0.5 | 0.678 | 0.82  | 0.913 | 0.963 |
| .30             | 0.067      | 0.13  | 0.226 | 0.353 | 0.5 | 0.647 | 0.774 | 0.87  | 0.933 |
| .40             | 0.085      | 0.153 | 0.248 | 0.367 | 0.5 | 0.633 | 0.752 | 0.847 | 0.915 |
| .50             | 0.091      | 0.16  | 0.254 | 0.371 | 0.5 | 0.629 | 0.746 | 0.84  | 0.909 |
| .60             | 0.085      | 0.153 | 0.248 | 0.367 | 0.5 | 0.633 | 0.752 | 0.847 | 0.915 |
| .70             | 0.067      | 0.13  | 0.226 | 0.353 | 0.5 | 0.647 | 0.774 | 0.87  | 0.933 |
| .80             | 0.037      | 0.087 | 0.18  | 0.322 | 0.5 | 0.678 | 0.82  | 0.913 | 0.963 |
| .90             | 0.007      | 0.026 | 0.087 | 0.238 | 0.5 | 0.762 | 0.913 | 0.974 | 0.993 |
| Reliah          | ility .95  |       |       |       |     |       |       |       |       |
| 1001140         | 11109 .00  | bo    | ound  |       |     |       |       |       |       |
|                 | 20         | 15    | 10    | 05    | 0.0 | .05   | .10   | .15   | .2    |
| $G_1^*(\tau_1)$ |            |       |       |       |     |       |       |       |       |
| .10             | 0.001      | 0.008 | 0.047 | 0.19  | 0.5 | 0.81  | 0.953 | 0.992 | 0.999 |
| .20             | 0.014      | 0.048 | 0.131 | 0.286 | 0.5 | 0.714 | 0.869 | 0.952 | 0.986 |
| .30             | 0.033      | 0.085 | 0.18  | 0.323 | 0.5 | 0.677 | 0.82  | 0.915 | 0.967 |
| .40             | 0.047      | 0.106 | 0.203 | 0.339 | 0.5 | 0.661 | 0.797 | 0.894 | 0.953 |
| .50             | 0.052      | 0.113 | 0.21  | 0.344 | 0.5 | 0.656 | 0.79  | 0.887 | 0.948 |
| .60             | 0.047      | 0.106 | 0.203 | 0.339 | 0.5 | 0.661 | 0.797 | 0.894 | 0.953 |
| .70             | 0.033      | 0.085 | 0.18  | 0.323 | 0.5 | 0.677 | 0.82  | 0.915 | 0.967 |
| .80             | 0.014      | 0.048 | 0.131 | 0.286 | 0.5 | 0.714 | 0.869 | 0.952 | 0.986 |
| 9.0             | 0 001      | 0.008 | 0.047 | 0.19  | 0.5 | 0.81  | 0.953 | 0.992 | 0.999 |







Figure 1. Plots of  $\Pr\{G_2(S_2)-G_1(S_1)\leq \text{bound}\}-\Pr\{G_2(S_2)-G_1(S_1)\leq -\text{bound}\}$  as a function of test reliability for  $G_1^{\star}(\tau_1)=G_2^{\star}(\tau_2)=.50$  in top frame and  $G_1^{\star}(\tau_1)=G_2^{\star}(\tau_2)=.75$  or .25 in bottom frame for labeled values of bound = {.05, .10, .20}.



differences in y1y2 values for rel $_1$  = rel $_2$  = .80 are larger by .02 to .03 than y1y2 values for rel $_1$  = .75, rel $_2$  = .85 and smaller by .02 to .03 than y1y2 values for rel $_1$  = .85, rel $_2$  = .75. But the two-sided probability statement used in Figure 1, Pr{  $G_2(S_2) - G_1(S_1) \le DOUND}$  changes less than .002 for bound = .10 and with rel $_1$  = rel $_2$  = .80 compared to rel $_1$  = .9, rel $_2$  = .7 or rel $_1$  = .7, rel $_2$  = .9. With bound = .20, the change in y1y2 values is less than .001 for these different reliability configurations. Calculations for year-1, year-2 comparisons based on an actual standardized achievement test, Stanford 9, and in which the tests have different reliabilities (and different norms distributions) can be found in Rogosa (1999b).

Increasing Percentile Rank,  $G_1^*(\tau_1) + .10 = G_2^*(\tau_2)$ . Table 2 displays values of y1y2 in (3) for a student who improved percentile rank 10 points from year-1 to year-2 in the sense of  $G_2^*(\tau_2) = G_1^*(\tau_1) + .10$ . The entries in Table 2 also use the simplification of (3) in setting the year-1 and year-2 test reliability coefficients to be equal. One basic question Table 2 informs about is, What's the probability of seeing a decline in the observed percentile rank, even when the student has made a noticeable improvement? (by setting bound = 0 in Table 2). For  $G_1^*(\tau_1) = .4$  or .5, that probability is .36 for test reliability .8, .295 for test reliability .9 and .217 for test reliability .95.

#### Insert Table 2 here

These probability statements,  $\Pr\{G_2(S_2)-G_1(S_1)\leq \text{bound}\}$ , such as in Table 2 allow a decline in scores to result from  $G_1(S_1)$  being "too high"  $(G_1(S_1)>G_1^*(\tau_1))$  as much from  $G_2(S_2)$  being much "too low." Another view of these kind of calculations can be obtained from Equation (2) by setting  $ps_1=.5$ , which results in a fixing of the value of  $G_1(S_1)=G_1(\tau_1)=\Phi[\sqrt{rel_1})\Phi^{-1}[G_1^*(\tau_1)]$ ]. Thus  $G_2(S_2)$  is the only random component in the student improvement. And for the simplest comparison take  $G_1^*(\tau_1)=.50$ , as that results in  $G_1(S_1)=G_1(\tau_1)=G_1^*(\tau_1)=.50$ . By fixing  $ps_1=.5$  a large random component of  $G_2(S_2)-G_1(S_1)$  is removed, and thus we would expect a quantity such as  $\Pr\{G_2(S_2)-G_1(S_1)\leq 0\}$  given a "true" increase  $G_2^*(\tau_2)=G_1^*(\tau_1)+.10$  would become smaller than the results shown in Table 2 (which are obtained from Equation 3). Below is a comparison of  $\Pr\{G_2(S_2)-G_1(S_1)\leq 0\}$  given  $G_2^*(\tau_2)=.6$ ,  $G_1^*(\tau_1)=.5$  from Equation (2) (fixing  $G_1(S_1)=.5$ ) and Equation (3). The Equation (2) quantities are smaller, but perhaps not by as much as expected (especially for the lower reliability values).

```
\begin{array}{llll} & & Pr\{\,G_2(S_2)-G_1(S_1)\,\leq\,0\},\, given\,\,G_2^{\star}(\tau_2)=.6,\,G_1^{\star}(\tau_1)=.5\\ \text{rel} & 0.8 & 0.825 & 0.85 & 0.875 & 0.9 & 0.925 & 0.95\\ \text{eq2} & 0.306 & 0.291 & 0.273 & 0.251 & 0.224 & 0.187 & 0.135\\ \text{eq3} & 0.360 & 0.349 & 0.335 & 0.318 & 0.295 & 0.265 & 0.217 \end{array}
```



Table 2.  $\Pr\{G_2(S_2) - G_1(S_1) \leq \text{bound} \mid G_1^{\star}(\tau_1), \ G_2^{\star}(\tau_2)\}\$  for reliability .80 to .95 and  $G_1^{\star}(\tau_1) + .10 = \ G_2^{\star}(\tau_2)$ .

|                 |        | .30  |                      | .88   | .85   | .83   | . 82  | .82   | 0.834 | . 85  | . 88  |                 |      | .30  |                                             | . 95  | . 92  | . 90  | .89   | 0.892 | 90    | . 92  | . 95  |             |        | .30  |                       | . 99  | .97   | 96.   | 0.956 | . 95  | 96.   | .97   | . 99  |
|-----------------|--------|------|----------------------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------|------|------|---------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------------|--------|------|-----------------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                 |        | .25  |                      | ω.    | . 79  | ۲.    | . 7   | ۲.    | 77.0  | ۲.    | . 82  |                 |      | .25  |                                             | . 90  | .86   | .83   | . 82  | 0.825 | .83   | . 86  | .90   |             |        | . 25 |                       | . 97  | . 93  | .91   | 0.899 | .89   | . 91  | . 93  | ο.    |
|                 |        | 7.   |                      | . 74  | . 71  | . 69  | .68   | .68   | 0.696 | . 71  | . 74  |                 |      |      |                                             | . 82  | .77   | . 74  | . 73  | 0.737 | . 74  | .77   | . 82  |             |        | . 2  |                       | 90    | . 84  | . 81  | 0.803 | . 80  | .81   | . 84  | . 90  |
|                 |        | .15  |                      | .64   | . 62  | .61   | .60   | . 60  |       | .62   | . 64  |                 |      | .15  |                                             | 9.    | . 65  | . 63  | . 63  | 0.632 | .63   | . 65  | 9.    |             |        | .15  |                       | ۲.    | . 70  | 9.    | 9.    | 9.    | 9.    | .70   | 0.752 |
|                 |        | .10  |                      | . 52  | . 52  | . 52  | . 52  | . 52  | 0.526 | . 52  | . 52  |                 |      | .10  |                                             | .51   | .51   | .51   | .51   | 0.517 | . 51  | . 51  | .51   |             |        | .10  |                       | . 51  | . 51  | . 51  | . 51  | . 51  | . 51  | . 51  | 0.511 |
|                 |        | . 05 |                      | .39   | 4.    | .43   | 4.    | .44   | 43    | 4.    | . 39  |                 |      | . 05 |                                             | ε.    | .37   | .39   | .40   | 0.402 | .39   | .37   | ω.    |             |        | . 05 |                       | . 25  | .31   | .34   | .35   | .35   | .34   | .31   | 0.256 |
|                 |        | 0.0  | -                    | . 26  | ω.    | .35   | •     | ъ.    | 0.351 | ω.    | . 26  |                 |      | 0.0  |                                             | Τ.    |       | . 28  | .29   | 0.295 | . 28  | 7     | ۲.    |             |        | 0.0  |                       | . 08  | .16   | .20   | .21   | .21   | . 20  | .16   | 0     |
|                 |        | 05   |                      | .16   | . 24  | .27   | •     | . 28  | 0.272 | •     | .16   |                 |      | 05   |                                             | .07   | . 15  | . 18  | .20   | 0.204 | . 18  | . 15  | .07   |             |        | 05   |                       | ٥.    | ٥.    | ٦.    | ۲.    | ٦.    | ۲.    | ٥.    | 0.021 |
|                 | ponnoq | 10   |                      | ۲.    | ۲.    | .20   | .21   | .21   | 0.203 | 0.17  | ۲.    |                 | ound | 10   |                                             | 0.    | ٥.    | ۲.    | ٦.    | 0.132 | ٦.    | ٥.    | ٥.    |             | ponnoq | 10   |                       | 00.   | . 02  | . 04  | •     | . 05  | .04   | . 02  | 00    |
|                 | рq     | 15   |                      | 0.058 | 0.114 | 0.146 | 0.161 | 0.161 | 0.146 | 0.114 | 0.058 |                 | Ā    | 15   |                                             | 0.011 | 0.042 | 0.067 | 0.079 | 0.079 | 0.067 | 0.042 | 0.011 |             | ğ      | 15   |                       | 0.001 | 0.007 | 0.017 | 0.023 | 0.023 | 0.017 | 0.007 | 0.001 |
| lity .80        |        | 20   |                      | 0.032 | 0.074 | 0.101 | 0.114 | 0.114 | 0.101 | 0.074 | 0.032 | lity .90        |      | 20   |                                             | 0.004 | 0.019 | 0.035 | 0.044 | 0.044 | 0.035 | 0.019 | 0.004 | lity .95    |        | 20   |                       | 0.    | 0.002 | 0.005 | 0.008 | 0.008 | 0.005 | 0.002 | 0     |
| Reliability .80 |        |      | $G_1^{ullet}(	au_1)$ | .10   | .20   | .30   | .40   | .50   | . 60  | . 70  | .80   | Reliability .90 |      |      | $G_{\mathbf{t}}^{\star}(\tau_{\mathbf{t}})$ | .10   | .20   | .30   | .40   | .50   | .60   | .70   | .80   | Reliability |        |      | $G_1^{\star}(\tau_1)$ | 10    | .20   | .30   | .40   | .50   | . 60  | . 70  | . 80  |

Increasing Percentile Rank,  $G_1^*(\tau_1) + .20 = G_2^*(\tau_2)$ . Table 3 displays values of y1y2 in (3) for an even larger student improvement from year-1 to year-2 in the sense of  $G_2^*(\tau_2) = G_1^*(\tau_1) + .20$ . The entries in Table 3 also use the simplification of (3) in setting the year-1 and year-2 test reliability coefficients to be equal. Again, one question to examine is, What's the probability of seeing a decline in the observed percentile rank, even when the student has made a noticeable improvement? Setting bound = 0 in Table 3, for  $G_1^*(\tau_1) = .3$ , that probability is .229 for test reliability .8, .133 for test reliability .9 and .053 for test reliability .95.

Insert Table 3 here



Table 3.  $\Pr\{G_2(S_2) - G_1(S_1) \le \text{bound} \mid G_1^{\star}(\tau_1), \ G_2^{\star}(\tau_2)\}\ \text{for reliability .80 to .95 and } G_1^{\star}(\tau_1) + .20 = \ G_2^{\star}(\tau_2)\ .$ 

| 0.142 0.223 0.221 0.32 0.4431 0.543 0.648 0.741 0.818 0.878 0.1442 0.203 0.277 0.362 0.4455 0.555 0.642 0.726 0.8 0.8 0.861 0.142 0.229 0.239 0.378 0.466 0.551 0.636 0.717 0.789 0.85 0.142 0.229 0.239 0.378 0.465 0.551 0.636 0.717 0.789 0.85 0.142 0.229 0.378 0.465 0.551 0.636 0.717 0.789 0.861 0.142 0.229 0.277 0.362 0.455 0.551 0.636 0.717 0.789 0.85 0.142 0.203 0.277 0.362 0.455 0.551 0.648 0.714 0.786 0.861 0.805 0.142 0.229 0.378 0.465 0.551 0.636 0.717 0.789 0.85 0.861 0.086 0.142 0.229 0.378 0.465 0.551 0.648 0.714 0.789 0.85 0.861 0.080 0.142 0.227 0.312 0.245 0.551 0.648 0.776 0.889 0.861 0.805 0.005 0.18 0.28 0.405 0.555 0.653 0.776 0.889 0.945 0.005 0.180 0.220 0.054 0.113 0.228 0.418 0.255 0.653 0.776 0.884 0.912 0.005 0.133 0.208 0.309 0.418 0.535 0.654 0.76 0.848 0.912 0.005 0.133 0.208 0.309 0.418 0.535 0.654 0.76 0.889 0.945 0.005 0.133 0.208 0.309 0.418 0.535 0.654 0.76 0.884 0.925 0.005 0.005 0.130 0.227 0.131 0.235 0.684 0.802 0.889 0.945 0.005 0.133 0.208 0.309 0.418 0.235 0.684 0.802 0.889 0.945 0.005 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105 0.105  | Reliability .80 | 05  | bound<br>0.0 | .05   | .10  | .15  | .20  | . 25 | .30   | . 35 | . 40  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|--------------|-------|------|------|------|------|-------|------|-------|
| bound  bound  colors   | 0.08            | 96  | 0.142        |       | ω.   | 4.   | •    | . 64 | •     | .81  | ω.    |
| bound  bound  0.029  0.299  0.378  0.463  0.551  0.636  0.717  0.789  0.0237  0.306  0.383  0.466  0.551  0.634  0.714  0.785  0.0237  0.306  0.383  0.465  0.551  0.636  0.717  0.789  0.0203  0.277  0.362  0.455  0.55  0.642  0.726  0.889  0.0142  0.221  0.32  0.431  0.543  0.648  0.741  0.818  bound  0.0  0.54  0.119  0.227  0.371  0.53  0.68  0.802  0.864  0.0133  0.208  0.303  0.415  0.535  0.654  0.76  0.848  0.0134  0.208  0.303  0.415  0.535  0.654  0.76  0.848  0.0135  0.208  0.303  0.415  0.535  0.654  0.76  0.848  0.0136  0.18  0.28  0.402  0.535  0.654  0.76  0.848  0.0137  0.208  0.303  0.415  0.535  0.654  0.76  0.848  0.0138  0.208  0.303  0.415  0.535  0.654  0.76  0.848  0.0139  0.139  0.227  0.371  0.535  0.68  0.802  0.889  0.0139  0.042  0.131  0.3  0.544  0.703  0.843  0.916  0.0054  0.119  0.227  0.371  0.53  0.68  0.802  0.899  0.0055  0.120  0.227  0.371  0.53  0.68  0.802  0.955  0.005  0.121  0.217  0.358  0.524  0.688  0.824  0.916  0.005  0.121  0.225  0.363  0.524  0.688  0.824  0.916  0.005  0.121  0.225  0.341  0.524  0.688  0.824  0.916  0.005  0.191  0.341  0.358  0.524  0.688  0.802  0.916  0.005  0.005  0.19  0.341  0.354  0.688  0.802  0.916  0.005  0.005  0.19  0.341  0.524  0.688  0.802  0.916  0.005  0.005  0.19  0.341  0.524  0.688  0.802  0.916  0.005  0.005  0.19  0.341  0.358  0.524  0.688  0.802  0.916  0.005  0.005  0.19  0.341  0.358  0.524  0.688  0.802  0.916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | 2   | 0.203        | •     | ω.   | 4.   | •    | . 64 | •     | ∞.   | 0.861 |
| bound  0.0237 0.306 0.383 0.466 0.551 0.634 0.714 0.785  0.0229 0.299 0.378 0.463 0.551 0.636 0.717 0.789  0.0229 0.299 0.378 0.463 0.551 0.636 0.717 0.789  0.0231 0.221 0.32 0.431 0.543 0.648 0.741 0.818  bound  0.0 0.054 0.119 0.227 0.371 0.53 0.68 0.802 0.889  0.0133 0.208 0.303 0.415 0.535 0.653 0.776 0.848  0.0133 0.208 0.303 0.415 0.535 0.654 0.76 0.848  0.0134 0.216 0.309 0.418 0.535 0.654 0.76 0.848  0.013 0.208 0.303 0.415 0.535 0.654 0.76 0.848  0.013 0.208 0.303 0.415 0.535 0.654 0.76 0.848  0.013 0.208 0.309 0.415 0.535 0.654 0.76 0.889  0.013 0.208 0.309 0.415 0.535 0.654 0.76 0.889  0.0054 0.119 0.227 0.371 0.53 0.68 0.802 0.809  0.0059 0.120 0.301 0.301 0.301 0.301 0.501 0.703 0.841 0.916  0.0053 0.115 0.217 0.358 0.524 0.688 0.824 0.916  0.0053 0.115 0.217 0.358 0.524 0.688 0.824 0.916  0.0053 0.115 0.227 0.341 0.524 0.688 0.824 0.916  0.0053 0.115 0.217 0.358 0.524 0.688 0.824 0.916  0.0053 0.115 0.217 0.358 0.524 0.688 0.824 0.916  0.0053 0.115 0.217 0.358 0.524 0.688 0.824 0.916  0.0053 0.0053 0.19 0.341 0.524 0.608 0.824 0.916  0.0053 0.0054 0.19 0.341 0.524 0.608 0.824 0.916  0.0053 0.0054 0.19 0.341 0.524 0.608 0.824 0.916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.169           | 6   | 0.229        | •     | ω.   | 4.   | •    | . 63 | •     | . 78 | 0.85  |
| bound  0.0229 0.299 0.378 0.463 0.551 0.636 0.717 0.789  0.0203 0.277 0.362 0.455 0.55 0.642 0.726 0.8  0.142 0.221 0.32 0.431 0.543 0.648 0.741 0.818  bound  0.0 0.054 0.119 0.227 0.371 0.53 0.68 0.802 0.889  0.133 0.208 0.309 0.418 0.535 0.663 0.776 0.849  0.133 0.208 0.303 0.415 0.535 0.654 0.76 0.848  0.016 0.18 0.28 0.402 0.535 0.654 0.76 0.848  0.013 0.208 0.303 0.415 0.535 0.654 0.76 0.848  0.013 0.208 0.303 0.415 0.535 0.654 0.76 0.848  0.013 0.208 0.303 0.415 0.535 0.653 0.776 0.848  0.010 0.028 0.301 0.415 0.535 0.663 0.776 0.848  0.0094 0.119 0.227 0.371 0.53 0.68 0.802 0.889  10 0.054 0.119 0.227 0.371 0.53 0.68 0.802 0.899  10 0.055 0.015 0.015 0.341 0.524 0.703 0.843 0.916  11 0.053 0.123 0.225 0.358 0.524 0.688 0.824 0.916  12 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916  13 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916  14 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916  15 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916  16 0.055 0.015 0.089 0.19 0.341 0.524 0.703 0.843 0.931  17 0.055 0.089 0.19 0.341 0.524 0.688 0.824 0.916  18 0.055 0.012 0.013 0.358 0.524 0.688 0.824 0.916  19 0.055 0.012 0.013 0.311 0.3 0.521 0.73 0.876 0.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.177           | 17  | 0.237        | ĸ.    | ω.   | 4.   | •    | . 63 | •     | . 78 | 0.846 |
| bound  0.0544 0.277 0.362 0.455 0.55 0.642 0.726 0.8 0.  bound  0.0 0.05 0.221 0.32 0.431 0.543 0.648 0.741 0.818 0.  bound  0.0 0.05 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.  0.133 0.208 0.303 0.415 0.535 0.653 0.776 0.848 0.  0.106 0.18 0.28 0.402 0.535 0.654 0.76 0.848 0.  0.106 0.18 0.28 0.405 0.535 0.654 0.76 0.848 0.  0.107 0.106 0.18 0.28 0.405 0.535 0.654 0.76 0.848 0.  0.108 0.209 0.303 0.415 0.535 0.654 0.76 0.848 0.  0.109 0.131 0.27 0.371 0.53 0.68 0.802 0.889 0.  0.001 0.042 0.131 0.3 0.521 0.73 0.876 0.955 0.  0.01 0.042 0.131 0.3 0.521 0.73 0.819 0.91 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.054 0.054 0.055 0.054 0.055 0.055 0.055 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0 | 0.169           | 69  | 0.229        | 7     | ω.   | .46  | •    | . 63 | •     | . 78 | 0.85  |
| bound  0.0 0.142 0.221 0.32 0.431 0.543 0.648 0.741 0.818 0.0  bound  0.0 0.54 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.0  0.133 0.208 0.303 0.415 0.535 0.654 0.76 0.848 0.0  0.133 0.208 0.303 0.415 0.535 0.654 0.76 0.848 0.0  0.133 0.208 0.303 0.415 0.535 0.654 0.76 0.848 0.0  0.106 0.18 0.227 0.371 0.535 0.654 0.76 0.848 0.0  0.0054 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.0  bound  0.0 0.054 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.0  10 0.054 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.0  10 0.054 0.119 0.327 0.371 0.53 0.68 0.802 0.889 0.0  10 0.055 0.123 0.227 0.371 0.524 0.703 0.843 0.911 0.0  11 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916 0.0  12 0.015 0.015 0.121 0.341 0.524 0.688 0.824 0.916 0.0  13 0.035 0.089 0.19 0.341 0.524 0.688 0.824 0.916 0.0  14 0.035 0.089 0.19 0.341 0.524 0.703 0.843 0.931 0.0  15 0.015 0.015 0.123 0.225 0.363 0.524 0.688 0.824 0.916 0.0  16 0.035 0.089 0.19 0.341 0.524 0.703 0.843 0.931 0.0  17 0.035 0.089 0.19 0.341 0.524 0.703 0.843 0.955 0.0  18 0.035 0.089 0.19 0.341 0.524 0.703 0.843 0.955 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1             | 12  | 0.203        | 7     | ъ.   | .45  | •    | .64  | •     | ω.   | ω.    |
| bound  0.0 .054 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.  0.054 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.  0.0106 0.18 0.28 0.402 0.535 0.654 0.76 0.848 0.  0.0133 0.208 0.303 0.415 0.535 0.654 0.76 0.848 0.  0.0106 0.18 0.28 0.402 0.535 0.654 0.76 0.848 0.  0.0106 0.19 0.227 0.415 0.535 0.663 0.776 0.848 0.  0.0054 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.  bound  0.0 0.54 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.  10 0.053 0.089 0.19 0.341 0.524 0.703 0.843 0.916 0.  11 0.053 0.115 0.217 0.358 0.524 0.684 0.916 0.  12 0.053 0.089 0.19 0.341 0.524 0.684 0.916 0.  13 0.053 0.015 0.225 0.363 0.524 0.684 0.916 0.  14 0.053 0.015 0.217 0.358 0.524 0.684 0.916 0.915 0.001 0.042 0.131 0.3 0.521 0.73 0.876 0.955 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0             | 9   | 0.142        |       | ų.   | .43  | •    | .64  | ۲.    | .81  | ω.    |
| bound </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |     |              |       |      |      |      |      |       |      |       |
| 0.0 0.054 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.  0.0106 0.18 0.228 0.402 0.535 0.663 0.776 0.864 0.  0.0106 0.18 0.28 0.402 0.535 0.654 0.76 0.848 0.  0.0133 0.208 0.303 0.415 0.535 0.654 0.76 0.848 0.  0.0133 0.208 0.303 0.415 0.535 0.654 0.76 0.848 0.  0.0133 0.208 0.303 0.415 0.535 0.654 0.76 0.848 0.  0.0106 0.18 0.28 0.402 0.535 0.663 0.776 0.848 0.  0.0054 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.  0.001 0.042 0.131 0.3 0.524 0.688 0.824 0.916 0.  0.0059 0.123 0.225 0.358 0.524 0.688 0.824 0.916 0.  0.0053 0.115 0.217 0.358 0.524 0.688 0.824 0.916 0.  0.0035 0.089 0.19 0.341 0.524 0.703 0.843 0.931 0.  0.0035 0.089 0.19 0.341 0.524 0.703 0.843 0.931 0.  0.001 0.042 0.131 0.3 0.524 0.688 0.824 0.916 0.  0.0059 0.109 0.341 0.524 0.688 0.824 0.916 0.  0.0059 0.109 0.341 0.524 0.703 0.843 0.931 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | ō   | nnd          |       |      |      |      |      |       |      |       |
| 2         0.054         0.119         0.227         0.371         0.53         0.68         0.802         0.889         0.000           7         0.106         0.18         0.28         0.402         0.535         0.663         0.776         0.864         0.0           9         0.133         0.208         0.303         0.415         0.535         0.654         0.76         0.848         0.0           9         0.133         0.208         0.303         0.415         0.535         0.654         0.76         0.848         0.0           9         0.134         0.228         0.402         0.535         0.663         0.776         0.848         0.0           10         0.054         0.119         0.227         0.371         0.53         0.68         0.802         0.889         0.0           1         0.054         0.119         0.227         0.371         0.53         0.68         0.802         0.889         0.889         0.889         0.899         0.999           1         0.035         0.042         0.131         0.3         0.524         0.703         0.874         0.916         0.916         0.916         0.931         0.916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 05              |     | •            | .05   | .10  |      | .20  |      |       |      | .40   |
| 2         0.054         0.119         0.227         0.371         0.53         0.68         0.802         0.889         0.0           7         0.106         0.18         0.28         0.402         0.535         0.663         0.776         0.864         0.0           9         0.133         0.208         0.303         0.415         0.535         0.654         0.76         0.848         0.0           9         0.133         0.208         0.303         0.415         0.535         0.654         0.76         0.848         0.0           9         0.133         0.28         0.402         0.535         0.663         0.776         0.848         0.0           1         0.064         0.119         0.227         0.371         0.53         0.68         0.776         0.849         0.0           1         0.054         0.119         0.227         0.371         0.53         0.68         0.802         0.889         0.           1         0.054         0.119         0.371         0.53         0.52         0.38         0.843         0.916         0.           2         0.01         0.089         0.19         0.341         0.524 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |     |              |       |      |      |      |      |       |      |       |
| 7         0.106         0.18         0.28         0.402         0.535         0.663         0.776         0.864         0.0           9         0.133         0.208         0.303         0.415         0.535         0.654         0.76         0.848         0.0           7         0.141         0.216         0.309         0.418         0.535         0.653         0.76         0.842         0.0           9         0.133         0.208         0.303         0.415         0.535         0.653         0.76         0.848         0.0           7         0.106         0.18         0.227         0.371         0.53         0.68         0.776         0.849         0.0           8         0.054         0.119         0.227         0.371         0.53         0.68         0.802         0.889         0.           9         0.01         0.042         0.13         0.53         0.68         0.876         0.955         0.           1         0.054         0.01         0.341         0.524         0.703         0.843         0.916         0.           1         0.053         0.115         0.217         0.354         0.524         0.688 <td>0.02</td> <td>22</td> <td>0.054</td> <td>۲.</td> <td>. 22</td> <td>ω.</td> <td>0.53</td> <td>•</td> <td>•</td> <td>. 88</td> <td>•</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02            | 22  | 0.054        | ۲.    | . 22 | ω.   | 0.53 | •    | •     | . 88 | •     |
| 9         0.133         0.208         0.303         0.415         0.535         0.654         0.76         0.848         0.0           7         0.141         0.216         0.309         0.418         0.535         0.654         0.76         0.842         0.0           9         0.133         0.208         0.303         0.415         0.535         0.663         0.76         0.848         0.0           7         0.106         0.18         0.227         0.371         0.53         0.68         0.76         0.848         0.0           9         0.054         0.119         0.227         0.371         0.53         0.68         0.802         0.889         0.           1         0.054         0.119         0.371         0.53         0.68         0.876         0.989         0.           1         0.035         0.089         0.19         0.341         0.524         0.703         0.843         0.916         0.           2         0.053         0.115         0.217         0.358         0.524         0.688         0.824         0.916         0.           1         0.053         0.115         0.217         0.358         0.524 </td <td>0.057</td> <td>27</td> <td>0.106</td> <td>٦.</td> <td>7</td> <td>4.</td> <td>53</td> <td>•</td> <td>•</td> <td>. 86</td> <td>•</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.057           | 27  | 0.106        | ٦.    | 7    | 4.   | 53   | •    | •     | . 86 | •     |
| 7         0.141         0.216         0.309         0.418         0.535         0.654         0.755         0.842         0.0084         0.0133         0.208         0.303         0.415         0.535         0.663         0.776         0.848         0.0084         0.0084         0.0084         0.0084         0.0084         0.0084         0.0084         0.0084         0.0088         0.0089         0.0095         0.0095         0.0095         0.0095         0.0095         0.0095         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0096         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.07            | 62  | 0.133        | ς.    | .30  | 4.   | 53   | •    | •     | . 84 | •     |
| bound  bound  0.054 0.133 0.208 0.303 0.415 0.535 0.664 0.76 0.848 0.0  0.054 0.18 0.28 0.402 0.535 0.663 0.776 0.864 0.0  0.0054 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.0  0.0 0.05 0.015 0.027 0.371 0.53 0.68 0.876 0.955 0.0  1 0.035 0.089 0.19 0.341 0.524 0.688 0.824 0.916 0.0  1 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916 0.0  1 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916 0.0  1 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916 0.0  1 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916 0.0  1 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916 0.0  1 0.053 0.019 0.341 0.524 0.088 0.824 0.916 0.0  2 0.01 0.042 0.131 0.3 0.521 0.73 0.843 0.931 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.08            | 37  | 0.141        | ς.    | .30  | 4.   | 53   | •    | •     | . 84 | •     |
| 0.106 0.18 0.28 0.402 0.535 0.663 0.776 0.864 0. 0.054 0.119 0.227 0.371 0.53 0.68 0.802 0.889 0.  ound 0.0 0.05 0.019 0.15 0.521 0.73 0.843 0.931 0. 0.053 0.015 0.25 0.363 0.524 0.688 0.824 0.916 0. 0.053 0.015 0.25 0.363 0.524 0.688 0.824 0.916 0. 0.053 0.015 0.217 0.358 0.524 0.688 0.824 0.916 0. 0.053 0.015 0.217 0.358 0.524 0.688 0.824 0.916 0. 0.053 0.015 0.217 0.358 0.524 0.688 0.824 0.916 0. 0.053 0.015 0.217 0.358 0.524 0.688 0.824 0.916 0. 0.053 0.015 0.217 0.358 0.524 0.688 0.824 0.916 0. 0.055 0.089 0.19 0.341 0.524 0.703 0.843 0.931 0. 0.01 0.042 0.131 0.3 0.521 0.73 0.843 0.931 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.079           | 6/  | 0.133        | 7     | .30  | 4.   | 53   | •    | 92.0  | . 84 | •     |
| 0.054       0.119       0.227       0.371       0.53       0.68       0.802       0.889       0.0         0ound       0.0       .05       .10       .15       .20       .25       .30       .35       .35         0.01       0.042       0.131       0.3       0.524       0.703       0.843       0.955       0.         0.053       0.089       0.19       0.341       0.524       0.688       0.824       0.931       0.         0.053       0.115       0.217       0.358       0.524       0.688       0.824       0.916       0.         0.053       0.115       0.217       0.358       0.524       0.688       0.824       0.916       0.         0.053       0.115       0.217       0.358       0.524       0.688       0.824       0.916       0.         0.053       0.019       0.341       0.524       0.688       0.824       0.916       0.         0.035       0.089       0.19       0.341       0.524       0.703       0.843       0.916       0.         0.035       0.042       0.131       0.3       0.524       0.703       0.843       0.916       0. <tr< td=""><td>0.0</td><td>2.2</td><td>0.106</td><td>٦.</td><td>7.</td><td>4.</td><td>53</td><td>99.</td><td>971.0</td><td>.86</td><td>•</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0             | 2.2 | 0.106        | ٦.    | 7.   | 4.   | 53   | 99.  | 971.0 | .86  | •     |
| 0.01       0.042       0.131       0.3       0.521       0.73       0.843       0.955       0.905         0.053       0.063       0.19       0.341       0.524       0.703       0.843       0.931       0.955       0.905         0.053       0.115       0.217       0.358       0.524       0.688       0.824       0.916       0.916       0.916       0.916       0.916       0.016       0.916       0.916       0.916       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016       0.016 <td>٥.</td> <td>2</td> <td>0.054</td> <td>.11</td> <td>. 22</td> <td>ų.</td> <td>0.53</td> <td>9.</td> <td>.80</td> <td>. 88</td> <td>•</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ٥.              | 2   | 0.054        | .11   | . 22 | ų.   | 0.53 | 9.   | .80   | . 88 | •     |
| 0.01       0.042       0.131       0.3       0.524       0.703       0.843       0.955       0.955         0.053       0.053       0.115       0.217       0.358       0.524       0.703       0.824       0.931       0.931         0.053       0.115       0.217       0.358       0.524       0.688       0.824       0.916       0.916         0.053       0.115       0.225       0.363       0.524       0.688       0.824       0.916       0.91         0.053       0.115       0.217       0.358       0.524       0.688       0.824       0.916       0.91         0.053       0.019       0.341       0.524       0.688       0.824       0.916       0.91         0.035       0.089       0.19       0.341       0.524       0.703       0.843       0.916       0.91         0.01       0.042       0.131       0.3       0.521       0.73       0.843       0.955       0.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |     |              |       |      |      |      |      |       |      |       |
| 0.0       .05       .10       .15       .20       .25       .30       .35         0.01       0.042       0.131       0.3       0.524       0.73       0.843       0.955       0.9         0.035       0.089       0.19       0.341       0.524       0.703       0.843       0.931       0.         0.053       0.115       0.217       0.358       0.524       0.688       0.824       0.916       0.         0.059       0.123       0.225       0.363       0.524       0.684       0.817       0.91       0.         0.053       0.115       0.217       0.358       0.524       0.688       0.824       0.916       0.         0.055       0.015       0.217       0.358       0.524       0.688       0.824       0.916       0.         0.035       0.089       0.19       0.341       0.524       0.703       0.843       0.931       0.         0.01       0.042       0.131       0.3       0.521       0.73       0.875       0.955       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 | ,   | Ţ            |       |      |      |      |      |       |      |       |
| 0.01     0.042     0.131     0.3     0.521     0.73     0.876     0.955     0.955       0.035     0.089     0.19     0.341     0.524     0.703     0.843     0.931     0.931       0.053     0.115     0.217     0.358     0.524     0.688     0.824     0.916     0.91       0.053     0.115     0.217     0.358     0.524     0.688     0.824     0.916     0.9       0.053     0.115     0.217     0.358     0.524     0.703     0.843     0.916     0.       0.035     0.089     0.19     0.341     0.524     0.703     0.843     0.931     0.       0.01     0.042     0.131     0.3     0.521     0.73     0.876     0.955     0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .0              | 5   | 0            | . 05  | .10  |      |      |      | .30   |      | .40   |
| 0.01         0.042         0.131         0.3         0.521         0.73         0.876         0.955         0.9           0.035         0.089         0.19         0.341         0.524         0.703         0.843         0.931         0.9           0.053         0.115         0.217         0.358         0.524         0.684         0.824         0.916         0.           0.053         0.115         0.217         0.358         0.524         0.684         0.817         0.91         0.           0.053         0.115         0.217         0.358         0.524         0.688         0.824         0.916         0.           0.035         0.089         0.19         0.341         0.524         0.703         0.843         0.916         0.           0.035         0.042         0.131         0.3         0.521         0.73         0.876         0.955         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |     |              |       |      |      |      |      |       |      |       |
| 0.035       0.089       0.19       0.341       0.524       0.703       0.843       0.931       0.         0.053       0.115       0.217       0.358       0.524       0.684       0.817       0.916       0.         0.059       0.123       0.225       0.363       0.524       0.684       0.817       0.91       0.         0.053       0.115       0.217       0.358       0.524       0.688       0.824       0.916       0.         0.035       0.089       0.19       0.341       0.524       0.703       0.843       0.916       0.         0.01       0.042       0.131       0.3       0.521       0.73       0.876       0.955       0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.002           | 02  | 0.01         | 0.042 | ٦.   |      | . 52 | ۲.   | .87   | σ.   | •     |
| 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916 0.0059 0.123 0.225 0.363 0.524 0.684 0.817 0.91 0.0053 0.115 0.217 0.358 0.524 0.688 0.824 0.916 0.0000.035 0.089 0.19 0.341 0.524 0.703 0.843 0.931 0.001 0.042 0.131 0.3 0.521 0.73 0.876 0.955 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0             | 11  | 0.035        | 0.089 | ۲.   | . 34 | . 52 | ۲.   | . 84  | ο.   | •     |
| 0.059 0.123 0.225 0.363 0.524 0.684 0.817 0.91 0.<br>0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916 0.<br>0.035 0.089 0.19 0.341 0.524 0.703 0.843 0.931 0.<br>0.01 0.042 0.131 0.3 0.521 0.73 0.876 0.955 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0             | 21  | 0.053        | 0.115 | 7    | .35  | . 52 | 9.   | . 82  | ο.   | •     |
| 0.053 0.115 0.217 0.358 0.524 0.688 0.824 0.916 0.9<br>0.035 0.089 0.19 0.341 0.524 0.703 0.843 0.931 0.9<br>0.01 0.042 0.131 0.3 0.521 0.73 0.876 0.955 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0             | 25  | 0.059        | 0.123 | ς.   | . 36 | . 52 | ٠.   | .81   | ο.   | •     |
| 0.035 0.089 0.19 0.341 0.524 0.703 0.843 0.931 0.97 0.01 0.042 0.131 0.3 0.521 0.73 0.876 0.955 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.              | 121 | 0.053        | 0.115 | 7    | .35  | . 52 | .68  | . 82  | ο.   | ο.    |
| 0.01 0.042 0.131 0.3 0.521 0.73 0.876 0.955 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0             | 111 | 0.035        | 0.089 | ٦.   | .34  | . 52 | . 70 | . 84  | ο.   | . 97  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0             | 02  | 0.01         | 0.042 | ٦.   | •    | . 52 | ۲.   | . 87  | ο,   | . 98  |



Decreasing Percentile Rank,  $G_1^{\star}(\tau_1)$  – .10 =  $G_2^{\star}(\tau_2)$ . Also, the setting in Table 2 can be turned around to examine a student with a "real" decline from year-1 to year-2, in the sense of  $G_1^{\star}(\tau_1) > G_2^{\star}(\tau_2)$ . Table 4 shows values of y1y2 in (3) for a student with  $G_1^{\star}(\tau_1)$  – .10 =  $G_2^{\star}(\tau_2)$ . The entries in Table 4 also use the simplification of (3) in setting the year-1 and year-2 test reliability coefficients to be equal. Table 4 shows that even with  $G_1^{\star}(\tau_1)$  – .10 =  $G_2^{\star}(\tau_2)$ , the probability of obtaining an increase of 10 or more points in observed percentile rank is a large as .132 for test reliability .90.

### Insert Table 4 here

Guaranteeing positive improvement? Not possible, but it is of interest to ask, How much real improvement is needed in order to obtain high probability of an observed improvement? The entries in Table 5 set high probability as .90 and ask how large  $k = G_2^*(\tau_2) - G_1^*(\tau_1)$  needs to be in order for  $Pr\{G_2(S_2) - G_1(S_1) > 0\} = .90$ . Even for test reliability .95, k needs to be as large as .165.

Insert Table 5 here



Table 4.  $\Pr\{ \, G_2(S_2) - G_1(S_1) \leq \text{bound} \mid G_1^{\star}(\tau_1), \ G_2^{\star}(\tau_2) \} \ \text{for reliability .80 to .95 and} \\ G_1^{\star}(\tau_1) - .10 = \ G_2^{\star}(\tau_2) \ .$ 

| Reliab                | ility .80 |       |        |       |       |       |       |       |       |
|-----------------------|-----------|-------|--------|-------|-------|-------|-------|-------|-------|
|                       |           | bo    | ound . |       |       |       |       |       |       |
|                       | 30        | 25    | 20     | 15    | 10    | 05    | 0.0   | .05   | .10   |
| $G_1^*(\tau_1)$       |           |       |        |       |       |       |       |       |       |
| .20                   | 0.111     | 0.171 | 0.252  | 0.356 | 0.478 | 0.609 | 0.733 | 0.831 | 0.899 |
| .30                   | 0.145     | 0.208 | 0.286  | 0.376 | 0.474 | 0.576 | 0.673 | 0.759 | 0.83  |
| .40                   | 0.166     | 0.23  | 0.304  | 0.387 | 0.474 | 0.563 | 0.649 | 0.728 | 0.797 |
| .50                   | 0.177     | 0.24  | 0.312  | 0.391 | 0.475 | 0.559 | 0.64  | 0.715 | 0.782 |
| .60                   | 0.177     | 0.24  | 0.312  | 0.391 | 0.475 | 0.559 | 0.64  | 0.715 | 0.782 |
| .70                   | 0.166     | 0.23  | 0.304  | 0.387 | 0.474 | 0.563 | 0.649 | 0.728 | 0.797 |
| .80                   | 0.145     | 0.208 | 0.286  | 0.376 | 0.474 | 0.576 | 0.673 | 0.759 | 0.83  |
| .90                   | 0.111     | 0.171 | 0.252  | 0.356 | 0.478 | 0.609 | 0.733 | 0.831 | 0.899 |
| Roliah                | ility .90 |       |        |       |       |       |       |       |       |
| iteliab.              | ility .50 |       |        |       |       |       |       |       |       |
|                       |           |       | und    |       |       |       |       |       |       |
|                       | 30        | 25    | 20     | 15    | 10    | 05    | 0.0   | .05   | .10   |
| $G_1^*(\tau_1)$       |           |       |        |       |       |       |       |       |       |
| .20                   | 0.042     | 0.091 | 0.178  | 0.31  | 0.484 | 0.67  | 0.825 | 0.921 | 0.969 |
| .30                   | 0.074     | 0.135 | 0.226  | 0.344 | 0.482 | 0.623 | 0.75  | 0.848 | 0.917 |
| .40                   | 0.096     | 0.163 | 0.252  | 0.361 | 0.482 | 0.605 | 0.717 | 0.812 | 0.883 |
| .50                   | 0.108     | 0.175 | 0.263  | 0.368 | 0.483 | 0.598 | 0.705 | 0.796 | 0.868 |
| .60                   | 0.108     | 0.175 | 0.263  | 0.368 | 0.483 | 0.598 | 0.705 | 0.796 | 0.868 |
| .70                   | 0.096     | 0.163 | 0.252  | 0.361 | 0.482 | 0.605 | 0.717 | 0.812 | 0.883 |
| .80                   | 0.074     | 0.135 | 0.226  | 0.344 | 0.482 | 0.623 | 0.75  | 0.848 | 0.917 |
| . 90                  | 0.042     | 0.091 | 0.178  | 0.31  | 0.484 | 0.67  | 0.825 | 0.921 | 0.969 |
| Roliah                | ility .95 |       |        |       |       |       |       |       |       |
| iteliab.              | iiity .50 | ho    | ound   |       | -     |       |       |       |       |
|                       | 30        | 25    | 20     | 15    | 10    | 05    | 0.0   | .05   | .10   |
| $G_1^{\star}(\tau_1)$ |           |       | •      | •     |       |       |       |       |       |
| .20                   | 0.007     | 0.03  | 0.098  | 0.248 | 0.489 | 0.744 | 0.912 | 0.979 | 0.996 |
| .30                   | 0.022     | 0.064 | 0.152  | 0.297 | 0.487 | 0.682 | 0.836 | 0.93  | 0.976 |
| .40                   | 0.036     | 0.089 | 0.183  | 0.32  | 0.488 | 0.657 | 0.798 | 0.897 | 0.955 |
| .50                   | 0.044     | 0.101 | 0.197  | 0.33  | 0.488 | 0.647 | 0.783 | 0.882 | 0.944 |
| .60                   | 0.044     | 0.101 | 0.197  | 0.33  | 0.488 | 0.647 | 0.783 | 0.882 | 0.944 |
| .70                   | 0.036     | 0.089 | 0.183  | 0.32  | 0.488 | 0.657 | 0.798 | 0.897 | 0.955 |
| .80                   | 0.022     | 0.064 | 0.152  | 0.297 | 0.487 | 0.682 | 0.836 | 0.93  | 0.976 |
| .90                   | 0.007     | 0.03  | 0.098  | 0.248 | 0.489 | 0.744 | 0.912 | 0.979 | 0.996 |



Table 5. Values of k such that Pr{  $G_2(S_2) - G_1(S_1) > 0 \mid G_1^*(\tau_1) + k = G_2^*(\tau_2)$ } = .90 for reliability .80 to .95.

|      |       |       | $G_1^{\star}(\tau_1)$ |       |       |
|------|-------|-------|-----------------------|-------|-------|
|      | .25   | .40   | .50                   | .60   | .75   |
| rel  |       |       |                       |       |       |
| .80  | 0.342 | 0.343 | 0.318                 | 0.277 | 0.193 |
| . 85 | 0.285 | 0.294 | 0.277                 | 0.245 | 0.174 |
| . 90 | 0.222 | 0.237 | 0.227                 | 0.204 | 0.149 |
| 95   | 0 148 | 0.165 | 0.161                 | 0.148 | 0.112 |



## 3. Consistency of Percentile Rank Scores Over Years

It depends what the meaning of "consistency" is. Another approach to describing accuracy of the percentile rank scores over successive years is to consider the setting in which  $G_i^*(\tau_i)$  is the same over two (or more years), e.g., .60 in year-1 and year-2. And then ask, given constant  $G_i^*(\tau_i)$  ( $G_1^*(\tau_1) = G_2^*(\tau_2)$ ), how consistent are the observed  $G_1(S_1)$  and  $G_2(S_2)$ ?

In Rogosa (1999a), one approach to describing the accuracy of a percentile rank score was to calculate, for a student whose percentile rank under perfect measurement is  $100 \, \text{G}_{i}^{\star}(\tau_{i})$ :

 $\text{hit-rate}_i = \Pr\{ | G_i(S_i) - G_i^{\star}(\tau_i) | \leq \text{tolerance} | G_i^{\star}(\tau_i) \}.$ 

And from Rogosa (1999a), for year i

hit-rate<sub>i</sub> = 
$$\Phi[\{\Phi^{-1}[G_i^{\star}(\tau_i) + \text{tol}] - (\sqrt{\text{rel}_i})\Phi^{-1}[G_i^{\star}(\tau_i)]\}/(1 - \text{rel}_i)^{\frac{1}{2}}] - \Phi[\{\Phi^{-1}[G_i^{\star}(\tau_i) - \text{tol}] - (\sqrt{\text{rel}_i})\Phi^{-1}[G_i^{\star}(\tau_i)]\}/(1 - \text{rel}_i)^{\frac{1}{2}}].$$

And thus a measure of year-to-year consistency is the probability that  $G_1(S_1)$  is within the designated closeness to  $G_1^{\star}(\tau_1)$  and  $G_2(S_2)$  is within the designated closeness to  $G_2^{\star}(\tau_2)$  (with typically  $G_1^{\star}(\tau_1) = G_2^{\star}(\tau_2)$ ):

$$consistency_{12} = hit-rate_1 \cdot hit-rate_2$$
.

Table 6 presents values of consistency<sub>12</sub> for three values of the tolerance: tol = .01, tol=.025, and tol = .05. For example, with a test reliability of .90 for both years, a student "really" at the  $60^{th}$  percentile has probability .026 of both observed percentile rank scores being within 2.5 percentile points of the  $60^{th}$  percentile (i.e., in the range 57.5 to 62.5) and probability .101 of both years' observed percentile rank scores being within 5 percentile points of the  $60^{th}$  percentile.

Insert Table 6 here



Table 6. Year-1, Year-2 Consistency of Observed Percentile Rank Scores.

| tolerance | .01   |       |                           |                      |       |       |
|-----------|-------|-------|---------------------------|----------------------|-------|-------|
|           |       |       | $G_1^*(\tau_1) = G$       | $\tau_2^*(\tau_2)$   |       |       |
|           | .25   | .40   | .50                       | .60                  | . 75  | .90   |
| rel       |       |       |                           |                      |       |       |
| 0.8       | 0.003 | 0.002 | 0.002                     | 0.002                | 0.003 | 0.009 |
| 0.825     | 0.004 | 0.002 | 0.002                     | 0.002                | 0.004 | 0.011 |
| 0.85      | 0.004 | 0.003 | 0.003                     | 0.003                | 0.004 | 0.013 |
| 0.875     | 0.005 | 0.003 | 0.003                     | 0.003                | 0.005 | 0.016 |
| 0.9       | 0.006 | 0.004 | 0.004                     | 0.004                | 0.006 | 0.02  |
| 0.925     | 0.008 | 0.006 | 0.005                     | 0.006                | 0.008 | 0.026 |
| 0.95      | 0.012 | 0.008 | 0.008                     | 0.008                | 0.012 | 0.04  |
|           |       |       |                           |                      |       |       |
|           |       |       |                           |                      |       |       |
|           |       |       |                           |                      |       |       |
| tolerance | .025  |       |                           |                      |       |       |
|           |       |       | $G_1^*(\tau_1) = G$       | $_{2}^{*}(\tau_{2})$ |       |       |
|           | .25   | .40   | . 50                      | .60                  | . 75  | .90   |
| rel       |       |       |                           |                      |       |       |
| 0.8       | 0.019 | 0.013 | 0.012                     | 0.013                | 0.019 | 0.058 |
| 0.825     | 0.022 | 0.015 | 0.014                     | 0.015                | 0.022 | 0.067 |
| 0.85      | 0.026 | 0.018 | 0.017                     | 0.018                | 0.026 | 0.078 |
| 0.875     | 0.031 | 0.021 | 0.02                      | 0.021                | 0.031 | 0.094 |
| 0.9       | 0.038 | 0.026 | 0.025                     | 0.026                | 0.038 | 0.117 |
| 0.925     | 0.051 | 0.035 | 0.033                     | 0.035                | 0.051 | 0.155 |
| 0.95      | 0.075 | 0.052 | 0.049                     | 0.052                | 0.075 | 0.224 |
|           |       |       |                           |                      |       |       |
|           |       |       |                           |                      |       |       |
|           |       |       |                           |                      |       |       |
| tolerance | .05   |       | *                         | .*                   |       |       |
|           |       |       | $G_1^{\star}(\tau_1) = G$ | $t_2(\tau_2)$        |       |       |
|           | .25   | .40   | .50                       | .60                  | .75   | .90   |
| rel       |       |       |                           |                      |       |       |
| 0.8       | 0.075 | 0.052 | 0.049                     | 0.052                | 0.075 | 0.216 |
| 0.825     | 0.085 | 0.059 | 0.056                     | 0.059                | 0.085 | 0.245 |
| 0.85      | 0.099 | 0.069 | 0.065                     | 0.069                | 0.099 | 0.281 |
| 0.875     | 0.118 | 0.082 | 0.077                     | 0.082                | 0.118 | 0.329 |
| 0.9       | 0.145 | 0.101 | 0.095                     | 0.101                | 0.145 | 0.393 |
| 0.925     | 0.189 | 0.133 | 0.125                     | 0.133                | 0.189 | 0.486 |
| 0.95      | 0.269 | 0.192 | 0.181                     | 0.192                | 0.269 | 0.625 |



#### References

Assistance Packet for Reporting 1998 STAR Test Results to Parents/Guardians, May 1998, prepared by the Standards, Curriculum, and Assessment Division, California Department of Education.

Assistance Packet for Reporting 1999 STAR Test Results to Parents/Guardians, April 1999, prepared by the Standards, Curriculum, and Assessment Division, California Department of Education.

Rogosa, D.R. (1999a). Accuracy of Individual Scores Expressed in Percentile Ranks: Classical Test Theory Calculations. CRESST Technical Report 509, September, 1999.

Rogosa, D.R. (1999b). How Accurate are the STAR National Percentile Rank Scores for Individual Students?--An Interpretive Guide. July 1999.

Rogosa, D.R. (1999c). Bias and Standard Error of Individual Scores Expressed in Percentile Ranks: Classical Test Theory Calculations. August 1999.















BEST COPY AVAILABLE



UCLA Graduate School of Education & Information Studies



## U.S. Department of Education

Office of Educational Research and Improvement (OERI)
National Library of Education (NLE)
Educational Resources Information Center (ERIC)



# **NOTICE**

# **Reproduction Basis**





This document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").

EFF-089 (3/2000)

